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q = Y@%l(fJ + ysn-4 (y -I- lf”fl(3) + Y- (Y t- Pf* (3) t . . . 

Using (6), (8) and (10) we obtain the form fl,fz (a prime denotes differentiation with 
respect to 3) 

fl = o*f&’ + o&f;* (@J = 0, 0 = 4) 
aI = A (3n -2)+ B, a, = --nA 

6, = nzD!2 + (--10n $- 9)&?:(2H) 
b, = (-6n + 4)b,/n, b, = (3n - 2)*bl/ns 

b, = Iln (~8 - 1)A1/2 - nAB + D/6 + (2% - 24)nC!(6H) 
b, = (5n - 4)AB + 5 (3n - 2)(--n + 1)4*/Z + B* + (3n - 2)(-3n f 
3)Ci(2U) 

b, = 2a,az, br = 2A2, b, = Qi'2 
H = ('in - 6)(4n - 3) 

The method of expanding the solution of (1) in a series in selfsimilar components is 
widely used, beginning with /8/, but the form of the 
some particular values of n. 
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ON MATHEMATICAL MODELS OF MAGNETIC FLUIDS* 

V.A. Z~~OROVICH 

A system of equations describing models of magnetic fluids (MF) with internal angular 
momentum in a magnetic field is studied. Linearized equations and their solutions in the form 
of spin waves and magnetosonic waves are given. The high-frequency magnetic susceptibility 
tensor of the fluid is calculated and the frequencies of homogeneous magnetic resonance are 
determined. The connection between the spin and acoustic waves in MF is governed by the 
presence, in the internal energy of the fluid, of terms with vorticity vector and deformation 
rate tensor (determining, in particular, the hydromagnetic energy). Various existing models 
used to describe ferromagnetic fluids (FMF) are discussed. Relaxation models of MF are 
studied and used to obtain the solutions of problems of plane Couette flow and cylindrical 
Poiseuille flow. A new expression for the effective viscosity of the MF is obtained. 

Several different models of MF are known. The simplest model /l/ describes paramagnetic 
fluids and certain types of the FMF in quasistationary magnetic fields quite well. However, 
in a number of important cases the above model aannot be used (e.g. at high frequencies of the 
magnetic field and for FMF at high volume concentrations of ferromagnetic particles with a 
*Pr~l.~at~.~e~~.,51,4,69~7~,1907 
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fairly high energy of magnetic anisotropy). Because of this, other models of MF have received 
wide use in which the processes of relaxation of the magnetization and internal angular momenta 
were taken into account /2-g/. 

1. Equations for the MF. The models of fluids taking internal angular momentum into 
account are introduced naturally on the basis of the Cosser continuum. We shall consider the 
following system of equations written in the variables of the universal observer coordinate 
system: 

d 1 
P Ft 1;GQ (1.1) 

(Maxwell's equations are written without taking into account the conduction and displacement 
currents, i.e. in the magnetostatic approximation). The components of the vector of volume 
density of the momentum of the fluid g$,, and stress tensor PUB 
relation 

(m) in (1.1) are given by the 

(1.2) 

In (1.1) and (1.2) Qa are the components of the vector of external mass forces acting on 
the fluid (e.g. the force of gravity), 3, are the components of the magnetic induction vector, 

vu are the components of the velocity vector of the individual points of the fluid, P is the 
mass density of the fluid, didt denotes the total derivative with respect to time t,V@ denotes 
the covariant derivative calculated relative to the universal observer coordinate system with 
variables xa (a= 1,2,3) and metric tensor determined by the covariant components gaB, 0, are 
the components of the internal rotation vector (the angular velocity vector of the orthonormal 
bases of the Cosser continuum), 0% are the components of the vorticity vector, e,P are the 

components of the deformation rate tensor , s is the specific density of the entropy, T is 
temperature, B. I are given constant coefficients, each are the components of the Levi-Civita 
pseudotensor, and Urn is a given differentiable function of the parameters p, 7, M,. Vpua (re- 

presenting part of the internal energy of the fluid). In the case when the function Ii,,, does 
not depend on the velocity gradients , the equations discussed here were obtained in /3/ with 
help of the variational equation. The Lagrangian A corresponding to Eqs.(l.l), (1.2) has 
the form 

The relaxation term Ra of the equations of angular momentum in (l.l), the relaxation term 
L= of the magnetization equation, the components of the viscous stress tensor rag , the 
components of instantaneous stress tensor AaP and the components of the heat flux vector q" 
governing the dissipative processes in the fluid, can be determined (according to C&sager) by 
the relation 

in which the coefficients zorPie, aaPhe, %eP, ras, @‘P are chosen so as to ensure that the internal 
generation of entropy is not negative; all these coefficients can be functions of the defining 
parameters of the fluid and field. In particular, in the isotropic case we can assume that 
the quantities B@,@ are 

eaR=e (gay - AF)f e,,n"na (1.4) 
+J1, =' 

g2 
(g=4-.=,~)+tn%fl+ 
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yre % f3 /, , 0.1 T, TII 1 % are scalar coefficients with a dimensions of time (relaxation times) and 
= @llMl are the components of the unit vector directed along the fluid magnetization 

vector. 
If i/g+ 0 and the coeffidients @ are independent of Q, then the third equation of 

(1.1) will enable us to eliminate the internal rotation vector from the remaining equations. 
In particular, after eliminating Q the equation of angular momentum takes the form 

p; $W-IgP lT*a 
i ) 

+ Vp(gGP:XaVhHe* =g [M, II*]"+ g@ (Hg* fg-'og) 
) 

(1.5) 

where H*a are the components of the effective magnetic field vector 

In some theories expressions (1.3) for R",La are replaced by the following Onsager 
relations: 

La=,a: (,$lB-In.MIB) ('.Q 

Ha _ ea ).M L = _ G5 
B 1. r (Qo-y3) 

If the quantities dU,IBM, are proportional to Ma then the quantities La can also be 
found using the expression (without changing the internal generation of the entropy) 

11.7) 

The basic difference between the equations discussed here and the corresponding equations 
for isotropic fluids /9, lO/ is connected with the fact that thermodynamic fluxes Ra,La are 
expressed by (1.3) instead of (1.6), (1.7) and the expressions dMldt -[C&Ml in /lo/ or dMidt - 
g(M,Hl in /9/ for the thermodynamic forces are replaced by the expressions dM/dt - IO, Ml. 

Eqs.(l.l)-(1.3) describe the models of viscous compressible and magnetizable fluids 
possessing the internal angular momentum 

Ka=g-'Ma+plRa 

In the real FNF the internal angular momentum is determined by the ferromagnetic single- 
domain particles dispersed in it, which have a natural, spin-generated angular momentum K, 
(related to the magnetic moment of the particles), and the moment Kc governed by the mechanical 

rotation of these particles. As was shown in /ll/, the angular momentum Ks determined by 
the rotation of the domains is several orders of magnitude less than the spin moment of the 
domains in FNF. (KQ= lo-'K~ for domains of diameter -IO-' cm., even at large angular vel- 
ocities Q,- 10Z see-l of the domains. 

Eqs.(l.l)-(1.3) considered here can be used to describe the FNF in high-frequency magnetic 
fields, and they sharpen the Neuringer-Rosenzweig equations /l/ in the quasistatic field by 
taking into account magnetic relaxation processes in the FMF. 

In the general case, the internal rotation vector R in (l.l)-(1.3) cannot be connected 
with any real relations in the medium (including the FNF) when we have the spin momentum g-‘M. 
Indeed, e.g. when I= 0, Eqs.(l.l)-(1.3) can be used to describe paramagnetic or diamagnetic 
fluids. Here it is obvious that in such fluids the vector 61 is different from zero, but does 
not describe any real rotations in these media. 

If we use the theory of FIG? to determine the vector Q, with the spin resulting from 
averaging the angular velocity vectors of the particles in FNF , as is done in /9, lo/, then 
passage to the limit in the equations of /lo/ for the isotropic FNF corresponding to freezing 
the particles into the fluid (as r,-0 in Eq.(2.33) or (2.36) inthenotation of /lo/) yields, 
for the spin angular velocity vector PM, not the precession equation (the Landau-Lifshitz 
equation) which should be the case, but a special relaxation equation. This shows that the 
equations for the isotropic FNF with a spin given in /lo/ and discussed here, based on the 
concept of Q shown above, are incorrect from the physical point of view. 

2. Linearized equations. Let us investigate the isentropic motions of a fluid 
described by Eqs. (l.l)-(1.3) , corresponding to the function u, of the form 

pU, = pU,,,o(p. M)+ 2nMo + 7M%,+ I/S VIM~M@~,~ + '/zv,M'~,~ (2.1) 

where M=(M Mu.)"' is the modulus of the magnetizability vector and VI, % Y are given con- 

stants. The acoefficients C@, rap in (1.3) are found from Eqs.(l.l) in which ~.-~=8,=0, and 
we adopt the following expressions for .aghe, .a a. . 

p-me = p (gahgee + gaegm) + ~ga8p 42.2) 
pw = ~g-‘gaip 
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where A, J( are the coefficients of viscosity and LJ is a constant. In the case in question 
the components of the momentum density vector bpk,,, of the stress tensor P$~ and of the 

effective magnetic field vector tf*% in Eqs.(l.l), (1.61, are determined as follows: 

fi"= If"- X-'.P - yw"- Q%WR - V&%i,~ - (2.S) 

I@ (dMp/dt - [ (0, dl],, -+- fiZprb’.) 

g’;,, I @ -- 1:2 y rot”M i_ ‘/% V, (QaJfh i_ vr~AJd& 

pm - cm) - - pg”S i- l/r YE Bh”MhCav,, -‘iz v,,M~M%%~ - l/x v~MT’%~ + 

&a (P”P + VV) + Lg”Bv).,*1. -+ ‘/* (-E%q t PLfi -- MfiP) 

For the magnetic susceptibility X and pressure p in the definitions (2.3) we have 

We will further assume that the observer coordinate system with variables z(+ is Cartesian. 
Let M,, H,, p@, "0 = 0 be constant values of the parameters of the fluid in the stateofequilibrium. 
Assuming that the functions M (p, 0. ~7 (za. E), P (za, 0, u(xa~ $1 vary very little relative to their 
equilibrium values, 

M = Mo + I', H = H, -I- h, p = 00 + Pl 
we obtain the following expression for the function V," up to second-order infinitesimals: . 

Here 

The symbol ( 10 means that the expressions in parenthesis are taken at the equilibrium 
values of the parameters. 

Taking into account relations (2.1)-(2.51, we linearize equations (1.11, (1.6) from which 
the function P (P,t) has been eliminated with help of the equation fox magnetizability in 

(1.1) 

Here 

3. Spin waves. Let us consider the spin waves in MF in the linearized formulation, i.e. 
thesmalladiabatic oscillations in the magnetization of the fluid, neglecting the acoustic 
waves. In accordance with the formulation of the problem we shall write the initial equations 
intheform 

Assuming that 

(3.1) 

Ir:~ir+exp[f(-mt+k,za)l, h= h*exp[i(-et+&@)] 

where o is the frequency of the wave and k, are components of the wave vector, we obtain from 

(3.1) 
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p= = f@bs, ha = - 4nk”k=k@ (3.2) 

We define the components of the high-frequency magnetic susceptibility tensor xas by 
the relation 

XaB=X~aa~+$-*kne+iXs~e~~ (3.3) 

~1=x_+x+,X*=x_-x+ (3.4) 
X* = '/p (& - roe + 0 (i/T - 1DI f gM, + opdA-‘l-’ 
x2 = -_xl + [PI + Bs - toe0 -I- o (l/r0 - fDk* + qdr*J-‘I-’ 

The following dispersion equation for the spin waves follows from Eqs.(3.1): 

kg + 4nXa kaka = 0, or P + 4n IXlk* + X2 (k,#)‘] = 0 (3.5) 

In the non-dissipative approximation (when 3= e@ =D =T,~=C"=o) the dispersion Eq.(3.5) 
yields the following expression for the frequency of the spin wave (which depends only on the 
direction of the wave vector and is independent of its modulus): 

(3.3) 

Here $ is the angle between the wave vector and the vector Ma, rl= pde’. 
Let us now consider a finite volume of the MF bounded by an ellipsoidal surface in an 

external (lateral) variable magnetic field varying with time according to the law eAot. 
We shall assume that the wavelength of the lateral field is much greater than the 

characteristic dimension 1 of the fluid ellipsoid, so that the field can be assumed to. be 
homogeneous at distances of the order of 1. In this case a homogeneous magnetic field is 
generated within the fluid and the magnetic resonance frequencies are given by the equation 

det (i + 4nNx)= 0 (3.7) 

where i is a three-dimensional unit matrix, N is the matrix of the components of the tensor 
of demagnetizing coefficients, and x is the matrix of components of the high-frequency 
magnetic susceptibility tensor calculated without dissipation: e=el=~=r~=rn-~=O. 

Assuming that the principal axes of the fluid ellipsoid are directed along the axes of 
the coordinate system (N=~%!(NDN,,NI)), we obtain from (3.7) the 
resonance frequency: 

If Nl= NE= N (e.g. for a sphere N='Ia, and for a cylinder 
the formula for o,becomes 

m.= @f,: 

following expression for the 

(3.3) 

N='/,), then Xl= &S = E and 

(3.9) 
We see from expression (3.8) that the frequency of uniform magnetic resonance depends on 

the coefficient I determining the energy of internal rotation. Estimating the quantity 6). for 
the FMF we find, that taking into account the internal rotation energy can appreciably reduce 
the resonance frequency e. as compared with its magnitude in the corresponding magnetic solids. 
This is in qualitative agreement with the experimental data given in /12/. 

4. Magnetoacoustic waves. We shall consider Eqs.(2.7), (2.8) in the non-dissipative 
approximation,i.e.for eafi=@=.=L=P=O. We shall seek a solution of these equations in 
the formofa harmonic wave propagating along the vector of constant magnetization of the fluid 
ka = kn=. In this case Eqs.(2.7) yield 

where the components 
and for pp we have 

,P = f=@hB + 6a%g, ha = - 4,ma I&, h = poo-‘k,v” (4.1) 
(- ioP‘@ + k’ nanB [tpc, (a$ + Mob) 0-l - MO’ (VI+ v,)]) uB + 

(‘/,Moykm@ + nanekMw[(% VI + ~2) o + i (pobql + 4s + fll+ R)] + 

‘/s kyk%r) pB =:O 

%“B are given by Eq.(3.3) in which we must put ~==~,,=LJ=~~=T,,-~=O, 

The dispersion equations for transverse waves follow from (4.1) 

PA + ‘IO W + w’f.?) k’ 
” = r Meg po + pdg’ [p&h + ‘/o (I” + ?W) k*l c4.2) 
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Putting na= (O,(),i)) we obtain the following expressions for the transverse waves 
described by the dispersion Eq.(4.2): 

f-l, = 0, ,? z= (IL', pz, II), B -7 (Ul, I", 0), ha = 0 

and the quantities P,V are connected by the relations 

lG* iI+ = u. [&I + 'PZ = 0 

6 7 I@ = Vpckpa-’ (viMt, i: iy)(p’ f @) 

(4.3) 

The signs in expressions (4.2) and (4.3) are matched. If Y%= y= 0, then the dispersion 
Eq.[4.2) will determine the frequency of the spin wave 

@S = SM,& (1 + PcJk%W (4 4) 
for which 19 = vS= US= 0. Thus the pxopagation of transverse acoustic waves through the fluid 
is due to the presence in the energy U ,,, of crossover terms with Me, ~~,e,~, and, in partiuclar, 
the gyromagnetic energy yM%,. 

The solid line 1 in the figure shows schematically the 
dispersion curve of the transverse waves. The dashed line 1 
shows the dispersion curve for I= 0. with a.'= - M,&, b 0, = 
-‘+fd(PcJB). 

Eqs.(4.1) also yield a dispersion equation for a longi- 
tudinal wave 

e* = aaka (1 + eW)-'. ep = fgaM~2 (Y& -i- v,)* h (4.5) 
a2 -= no* + I& + pi,-' (M, - p~~~~*b)lp~~ t Me (4% + I% + bdl 3. 
1= I1 i- pore 14% + @If iw-' 

If n"= (o,o,t), then the following relations hold for the 
longitudinal wave: 

k 

The dispersioncurveof the longitudinal wave is shown in the figure with the solid line 
2 (the dashed line 2 corresponds to I = 0, o,* = a/e and o+ is placed on the graph arbitrarily). 

We see from Eq.td.5) that the velocity of the longitudinal wave depends, in general, on 
the frequency of the wave (i.e. there is a dispersion of the velocity of sound). 

5, On the effect of an increase in the viscosity of MF in a magnetic field. 
Below we discuss relaxation models of MF within whose framework the solution of the Couette 
and Poiseuille problems are given. The problems of plane Couette and Poiseuille flows were 
studied in /ll/ within the framework of the model of MP with internal angular momentum related 
to the magnetization. The problem of plane Couette flow was studied within the framework of 
the theory of FMP with internal rotation, in ,431. As was noted in /9, lo/, the incremental 
increase in the coefficient of viscosity of the fluid in magnetic field in these problems, 
described using the model of MP /ll/ and applied to the FMF', differs from the values obtained 
in the well-known theory of FMP with internal rotation /7/ by several orders of magnitude. 
In this connection we note at once that the equations in /ll, 7/ describe different FMF, and 
therefore we cannot compare the incremental increase in viscosity given in these papers, as 
was done in /9, lo/. 

It must be remembered that various types of FMF exist fox which the effect of change in 
the viscosity in magnetic field is essentially different. For the FMF in which the disperse 
ferromagnetic particles have low energy of magnetic anisotropy, in which case the orientation 
of the particle and the direction of its magnetic moment are practically unrelated (super 
paramagnetism), the effect will be vanishingly small {the change in the value of the coef- 
ficient of viscosity will be a fraction of a percent of its value /13/). As we know, such 
FMF in quasistationary fields are well-described by the Neuringer-Rosenzweig (NR) equations 
/l/ which do not take into account the change in viscosity fn the magnetic field at all. The 
model of the FMF in/U/is a generalization of the NR model, and takes into account the spin- 
related internal angular momentum which really exists in FMF. Therefore, the equations of 
/ll./ describe the FMP in a quasistationary field, in any case not less accurately than the 
NR equations, and can be used to describe the FMF in high-frequency magnetic fields when the 
NR equations become inapplicable. In the FMF in which the dispersed ferromagnetic particles 
are of sufficiently high energy of magnetic anisotropy and the magnetic moments are "frozen" 
into these particles, the effect of a change in viscosity in the magnetic field is more 
significant, and in some cases it must be taken into account. This is what happens in the 
equations used in /8/, However, when using the equations in /a/, we find that the maximum 
increment in the coefficient of viscosity in the Couette problem is small even when the 
parameters are optimal (in the limit magnetic field when the magnetic field and the vorticity 
vectors are orthogonaland the volume concentration of the particles in the fluid is high 
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cp-0.2) and reaches -2O-25% of the value of the coefficient of viscosity. In many cases 
(though not always) such F'MF can be described by the equations of /l/ with sufficient accuracy. 
Thus the crux of the matter is that the incremental increase in the value of the coefficient 
of viscosity need only be taken into account for certain types of the FMF in fairly strong 
magnetic fields. 

In this connection, the use in /8/ of the vector of internal rotation 161 is not essential 
for describing the effect of an increase in the viscosity of F'MF in a magnetic field, and the 
dependence of the increment in the value of the coefficient of viscosity on the coefficient I 
in /8/ is only related to the notation of the coefficients in the other (relaxation) terms of 
the momentum equation /5/. 

Moreover, as we know /14/, the term containing the angular momentum IQ in the momentum 
equation in the theory of FMF with internal rotation /7, 8/ can be comparable to the remaining 
terms of the momentum equation only at very high frequencies of the magnetic field, when the 
equations become inapplicable from the physical point of view (even if because of the need to 
take into account the appreciably larger /ll/ spin moment of the domains in the FMF at much 
lower frequencies). Therefore, the use of the moment IQ in existing theories /7, 8/ is not 
justified, although these theories have achieved a certain limited application. 

The problem of taking into account the internal (gyromagnetic) angular momentum of the 
FMF was discussed in /lo/. The basic assertions made by the authors in /lo/, concerning the 
internal moments are that the equations of /ll/, which take into account only the spin angular 
momentum, cannot be used to describe the FMF, since the terms containing the spin moment are 
small compared with other terms of the equations, and the attempt to use these equations to 
describe the hydrodynamic motion , as was assertled in /lo/, leads to a disagreement with ex- 
perimental data of FMF viscosity measurements. Both these assertions are false. 

Indeed, when the terms containing the gyromagnetic ratio g are neglected, the equations 
with internal moment g-'M (and without taking into account the relaxation of the magnetization 
M) discussed in /lo/, become in NR equations /l/ which, as we know and as the authors note in 
/lo/, can be, and in fact are used in practice to describe the FMF. Thus the proof given by 
the authors in /lo/ implies the opposite , namely that the equations of /4/ can be used to 
describe the FMF. As regards the assertions made by the authors in /lo/, that the results of 
/ll/ contradict experimental data on the viscosity of FMF, we should note that the experiments 
to which they refer deal with the FMF in which the particles have magnetic moments "frozen 
in" and therefore bear no relation to the FMF with "super paramagnetism" described by the 
equations of /ll/. 

It should also be noted that the proof that terms with internal spin moment in the 
equations of /ll/ are small, given in /lo/, was based on using, in the estimates given, the 
characteristic time t--sec. and internal rotation Q-isec-1. It is, however, clear that 
the characteristic time in the wave processes in FMF (described by the hydrodynamic equations!) 
can be IO-', 10-g and 10-T sec. and even shorter, a fact ignored in /lo/, where the arguments 
are based on the condition that t--sec. only. The statement in /lo/ that they used in 
their estimates the same values of the parameters as in /ll/, is incorrect: in /ll/ a value 
of 100 set-1 was adopted for the angular velocity and the domain in FMF, and no estimate was 
used at all for the time t. 

It is precisely by taking into account the terms with internal moment g-'M (which are 
indeed small for the values of the parameters used in /lo/, but become appreciable in high- 
frequency hydrodynamic processes), that the equations discussed in /ll/ describe, for example, 
the well-known spin waves. 

A theory taking into account the internal angular momenta in the mechanics of FMF 
(including those connected with iternal rotation), was developed in /3/, and above we have 
discussed the high-frequency processes in FMF in which the internal moments must be taken into 
account. However, in many hydrodynamic problems the influence of the internal moments is not 
important; therefore the relaxation models of E'MF in which the internal angular momenta are 
not taken into account,but the processes of relaxation of magnetization of the fluid are, are 
of interest. Below we consider the relaxation model of MF which is described, in the inertial 
Cartesian coordinate system, by the following set of equations: 

p (d/dt)(v”--l/S up-'rot%)= a,[-#'+ TaB+'/,(MaLB --@La)] - (5.1) 
YMLa%, f 'IS y (rO+M) a%, + ‘In @fAaaHA - HA a”@) i- p 

rotH = 0, div (H + 4nM) = 0 



546 

with 

Here U is a given differentiable function of the parameters 11, s and IV = (.M,:Il"J' :. 
System (5.1) is obtained from the variational equation /15/ 

~~~Ad~~d~ ~1~ KlF*+ hit' = 0 

the Lagrangian A and functional 6W' of the form 

A = -$A & HZ-yMao,--pU(p, s, M) 

pT8~-~~b~&~-pL‘% 

and represents a special case of Eqs.(l.f), (1.2). 
System (5.1) is obtained using the variational equation from /3, 5/. Later, the equations 

were derived in /lo/ using the energy equation, with the termodynamic fluxes qa, -cap, La 
depending linearly on the thermodynamic forces a,T,e,B,dMtdt-[[o,M1 for y= 0. 

The relaxation term L" of the equation for the magnetization , the components of the heat 
flux vector qa and the components of the viscous stress tensor zab in Eqs.(S.l) pan be 
determined using the dissipation function 1s depending on the thermodynamic forces e,@. S,T, 
pd (M/p)/~t - iw, Ml. and possibly on other defining parameters of the fluid and field 

Ta---l$a T+@ e@ +La (p g+- [w ‘W, 

L~_=,,a~a(p%~M.-~~,M~~) 

) (5.2) 

where PO I.% rs are scalar functions of the defining parameters. 
If o is a quadratic function of thermodynamic forces , then Eqs.(5.2) will give the Cmsager 

relations. In particular, in the simplest case relations (1.3), (1.4) can be used as the 
Onsager relations. Further we shall use for za*, La a relation of the form 

r@ = 2pea.3,-ag%&~, La=@ 
( 
p +fp-b Ml@) (5.3) 

e@ = epy - tPd$ + e ,/ 7~9 

in which 3,~ are the coefficients of viscosity. The coefficients h,p,8,elt can, in general, 
be speoified as functions of the defining parameters of the fluid and field. 

In the case of an incompressible fluid the pressure p is regarded as an additional 
unknown function, and the equation for p in (5.1) is, in this case, neglected. Eqs.(5.1) take 
into account the gyromagnetic energy of the fluid, the magnetization relaxation processes, 
viscosity and thermal conductivity of the fluid. 

The solutions of the Couette and Poiseuille problems obtained below show, that the system 
of Eqs.(s.l), (5.3) describes the effect of an increase in the viscosity of the fluid in a 
magnetic field, and when the coefficients 6 in (5.3) are suitably chosen, the increase in 
the coefficient of viscosity is found to be the same as in the theary of FMF with internal 
rotation /8/. 

6. Couette flow. Let us consider a stationary flow of fluid between the planes P= 0, 
S= d= const in a given constant external field with induction B"== (BI~,B~~,B,~). The plane z9= 0 
is fixeat and the plane S= d moves With constant velocity u= ~2~~~,0,0), %= con& When Qa= 0, 
Eqs.(5.1) and (5.3) and the boundary conditions (the condition of adhesion of the fluid and 
the known condition for the magnetic field) are satisfied,if we put p=const in the region 
O<G(d and 

v = (20~~3, 0, O), H - (B,", B,O,B," - 4nM,) 

The equation for magnetization in (5.1) is transformed, in the present case, to an 
algebraic equation, from whfch we obtain, up to terms of the first order of smallness in 006, 
assuming that the dimensionless parameter o&3 is small, 

M= = #i"+flf [o,atla - xyocL 

Determining the components of the force vector f,acting on the plane 9~ 0, we find that 
f'= 2&=%* where we have the following expression for the effective coefficient of viscosity 
pe : 

pe = p + V,fH% sida (6.1) 

Here OT is the angle between the vorticity vector and the magnetic field vector H. 

7. Poiseuille flow. Let us consider a stationary flow of fluid in a cylindrical pipe 
ofcircular cross-sectionof radius RI made of a non-magnetic material , under the action of a 
pressure drop, in a constant magnetic field HO directed along the pipe axis. We introduce 
a cylindrical system of coordinates r. cp, 29 attached to.the pipe, and we shall seek a solution 
of Eqs. (5.1) and (5.3) for Qa= 0 in the form of expansions in terms of the dimensionless 
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parametere= --'l,pR~~4aplaz, assuming that e is small 

u=v++@+..., M= M,+M,e+M,e'+... (7.1) 

Taking into,account terms of the second order of smallness in e, we obtain from (5.11, 
(5.3) the following equations for determining the functions v,M: 

Eqs.17.11, (7.2) have the 'following solution satisfying the condition of adhesion of the 
fluid at the pipe walls: 

Here pa= p+%X*S,,% is the effective coefficient of viscosity (identical with expression 
(6.11, since we have here a=& t o within the degree of accuracy used). 

The solution shows that when the gyromagnetic energy (at y#O) is taken into account, 
the magnetized fluid executes a screw motion within the pipe. The rate of fluid flow is 
described by the usual relation of the Navier-Stokes theory of a viscous fluid in which the 
coefficient of viscosity p is replaced by the effective coefficient pe. 

We note that an estimate of the terms with coefficient y in the solutions obtained above 
shows that in the case of real fluids these terms are, in general, small, and their influence 
on the flows discussed here can be disregarded in practice. However, these solutions with 
small terms containing Y describe effects (e.g. the magnetization of the fluid determined 
by the vorticity) which can be utilized in the experimental determination of the quantity Y. 
On the other hand, it is clear that hydrodynamic problems exist (e.g. those connected with 
supersonic waves), in which the terms with y are appreciable. 

The form of the dependence of the magnetization relaxation time 8 in formula (6.1) on the 
defining parameters, and in particular on the magnetic field, must be chosen by comparing it 
with the experimental relation tpLB = pa(R). In particular, formula (6.1), which can be applied 
to the FMF already when 8 = coast, describes the saturation of the viscosity in FMF in strong 
magnetic fields, whose magnitude corresponds exactly to the experimental value when the 
constant 8 is chosen approximately (in the FNF the relaxation time 0 is determined by the 
characteristic rotational Brownian diffusion of the particles in the FNF, and for particles 
of diameter -lOOA in a fluid of viscosity -40-p Poise it is of the order of -lo-" set .). 
when the magnetic fields are weak, formula (6.1) at e=coast describes quantitatively correctly, 
in any case, existing experimental data /16-18/. A quantitative comparison with these ex- 
periments in the region of weak fields is difficult, since/16-18/containnodirectexperimental 
data showing the dependence of the magnetization of the FNF on the field. We also note that 
the formula in /8/ for pI can also be obtained from (6.1) by choosing, in an appropriate 
manner, the dependence of I3 on the field. However, according to /17, 18/ the relation for 
bshows a poor agreement with experiment (the particle concentrations used in /8/ to obtain 
the correct values of pLe in the region of saturation, do not correspond to the actual con- 
centrations). 
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ON THE PAPER BY '/,A, ZHELNOROVICH ENTITLED 
"ON MATHEMATICAL MODELS OF MAGNETIC FLUIDS"* 

V.V. GCGOSOV 

The paper by V.V. Ehelnorovich /I/ consists of two parts. In the first part equations 
are given for describing magnetic fluids (MF), which are not basically different from the well- 
known euqations /Z-4/. The system is linearized and a solution is sought for the propagation 
of monochromatic waves. In the second part of the paper (Sect.5) an attempt is made to reply 
to a criticism which appeared in the review /4/ and in /3/, concerning the paper by Zhelnorovich 

/5/. Further, another model of MF is described in Sect.5, different from that given in Sect.1 
of /l/, and is used to solve the couette gfid Poiseuille problems. In doing this he not only 
repeats the errors already discussed in /3, 41, but he also makes further errors, which will 
be discussed in the present paper. 

The interest in describing the behaviour of magnetizable fluid media in nagnetic fields 
is primarily connected with,producing MF and practical applications of MF, which are colloidal 
solutions of fine ferromagnetic particles. 

It would seem thatthe simplest way of describing the behaviour of MF would be to use 
the normal equations of hydrodynamics with an additional force MVH acting on the fluid from 
the direction of the magnetic field Ii. The magnetization M can, in most cases, be assumed 
to be parallel to the magnetic field M= @I. Precisely such a model was proposed in /6/. It 

satisfactorily describes many phenomena and is widely used in practice. 
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